
Effective Virtual CPU Configuration with QEMU
and libvirt

Kashyap Chamarthy <kchamart@redhat.com>

NLUUG
Utrecht, 2019

1 / 38



Timeline of recent CPU flaws, 2018 (a)

Jan 03• Spectre v1: Bounds Check Bypass

Jan 03• Spectre v2: Branch Target Injection

Jan 03• Meltdown: Rogue Data Cache Load

May 21• Spectre-NG: Speculative Store
Bypass

Jun 21• TLBleed: Side-channel attack over
shared TLBs

2 / 38



Timeline of recent CPU flaws, 2018 (b)

Jun 29• NetSpectre: Side-channel attack
over local network

Jul 10• Spectre-NG: Bounds Check Bypass
Store

Aug 14• L1TF: “L1 Terminal Fault”

Nov 01• PortSmash: Impacts SMT processors

3 / 38



Timeline of recent CPU flaws, 2019

May 14• ZombieLoad: Leaks data across
protection boundaries

May 14• RIDL: Rogue In-Flight Data Load

May 14• Fallout: Leaks data from Store
Buffers

. . . • ?

4 / 38



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

5 / 38



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

5 / 38



What this talk is not about

Out of scope:

Internals of various side-channel attacks
How to exploit Meltdown & Spectre variants
Detailed performance analysis

 Related talks in the ‘References’ section

5 / 38



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
KubeVirt, et al

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

6 / 38



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
KubeVirt, et al

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

6 / 38



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
KubeVirt, et al

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

6 / 38



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
KubeVirt, et al

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

6 / 38



KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk1 Disk2

libvirtd

OpenStack,
KubeVirt, et al

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

6 / 38



QEMU and KVM
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe Virtio-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

7 / 38



QEMU and KVM
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe Virtio-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

7 / 38



Hardware-based virtualization with KVM

KVM prepares
to enter CPU
‘Guest Mode’

Perform in-kernel
emulation

Emulate
in-kernel?

QEMU issues
ioctl(KVM_RUN)

QEMU emulates
hardware

Execute natively
in ‘Guest Mode’.
(CPU with VMX)

No

Yes

VMENTER

VMEXIT

8 / 38



Part I
Interfaces to configure vCPUs

9 / 38



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

10 / 38



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

10 / 38



x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

10 / 38



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use libvirt’s host-model

11 / 38



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use libvirt’s host-model

11 / 38

On a guest running with qemu64



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerablespec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use libvirt’s host-model

11 / 38

Spectre-NG



x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

 Always specify an explicit CPU model;
or use libvirt’s host-model

11 / 38



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

12 / 38



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt-machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

12 / 38

Default CPU depends on
the machine type



Defaults of other architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — host for KVM; power8 for TCG (pure emulation)

s390x — host for KVM; qemu for TCG

12 / 38



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS [...]

13 / 38



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS [...]

13 / 38



Configure CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu IvyBridge-IBRS-cpu IvyBridge-IBRS [...]

13 / 38

Named CPU model



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

14 / 38



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

14 / 38

Named CPU model



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=offvmx=off,pcid=onpcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

14 / 38

Granular CPU flags



Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Skylake-Client-IBRS,vmx=off,pcid=on [...]

For a list of supported vCPU models, refer to:
$ qemu-system-x86_64 -cpu help

Or libvirt’s — ‘virsh cpu-models x86_64’

14 / 38



QEMU’s CPU-related run-time interfaces

Granular details about vCPU models, their capabilities & more:
query-cpu-definitions
query-cpu-model-expansion
query-hotpluggable-cpus
query-cpus-fast; device_{add,del}

 libvirt runs some of these at its daemon start-up time,
and caches the results

15 / 38



Part II
CPU modes, models and flags

16 / 38



(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:

No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 38



(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest

Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 38



(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 38



(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal if live migration is not required

17 / 38



(1) Host passthrough – when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 38



(1) Host passthrough – when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 38



(2) QEMU’s named CPU models (a)

Virtual CPUs typically model physical CPUs

Add or remove CPU features:
[...] qemu-system-x86_64 -cpu Broadwell-IBRS,\
vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’

19 / 38



(2) QEMU’s named CPU models (a)

Virtual CPUs typically model physical CPUs

Add or remove CPU features:
[...] qemu-system-x86_64 -cpu Broadwell-IBRS,\
vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’
19 / 38



(2) QEMU’s named CPU models (b)

QEMU is built with a number of pre-defined models:
$ qemu-system-x86_64 -cpu help
Available CPUs:
...
x86 Broadwell-IBRS Intel Core Processor (Broadwell, IBRS)
...
x86 EPYC AMD EPYC Processor
x86 EPYC-IBPB AMD EPYC Processor (with IBPB)
x86 Haswell Intel Core Processor (Haswell)
...
Recognized CPUID flags:
amd-ssbd apic arat arch-capabilities avx avx2 avx512-4fmaps
...

20 / 38



(3) ‘host-model’ — a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl)

;
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’
and named CPU models

21 / 38



(3) ‘host-model’ — a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’
and named CPU models

21 / 38



(3) ‘host-model’ — a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’
and named CPU models

21 / 38



(3) ‘host-model’ — example libvirt config

From a libvirt guest definition:
<cpu mode=’host-model’>

<feature policy=’require’ name=’vmx’/>
<feature policy=’disable’ name=’pdpe1gb’/>
...

</cpu>

 libvirt will translate it into a suitable CPU model,
based on ‘virsh domcapabilities’

22 / 38



(3) ‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest sees the same vCPU model

But: When the guest ‘cold-reboots’, it may pick up
extra CPU features—prevents migrating back to the source host

 Use host-model, if live migration in both directions
is not a requirement

23 / 38



(3) ‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest sees the same vCPU model
But: When the guest ‘cold-reboots’, it may pick up
extra CPU features—prevents migrating back to the source host

 Use host-model, if live migration in both directions
is not a requirement

23 / 38



OpenStack: Nova and CPU models
Relevant config attributes in the [libvirt] section of
/etc/nova/nova.conf (details in the docs):

cpu_mode
Can be: host-model, host-passthrough, or custom

cpu_model & cpu_model_extra_flags
Possible values from the <cpu> element in:
‘virsh domcapabilities’
And from: ‘qemu-system-x86_64 -cpu help’

 Other clients of libvirt & QEMU offer equivalents
24 / 38



Part III
Choosing CPU models & features

25 / 38



Finding compatible CPU models

Data Center (Intel host CPUs)

Haswell Westmere IvyBridge SandyBridge

Nehalem Broadwell Westmere Nehalem-IBRS

26 / 38



Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()

compareHypervisorCPU() and baselineHypervisorCPU()

↖
Available in libvirt 4.4.0+

27 / 38



Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()
compareHypervisorCPU() and baselineHypervisorCPU()

↖
Available in libvirt 4.4.0+

27 / 38



Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
28 / 38



Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRSHaswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRSSkylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
28 / 38

Two CPU
models



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 38



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/><feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/><feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 38

Intersection between our
Haswell & Skylake variants



Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 38



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 38



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 38



x86: QEMU’s “machine types”

Two main purposes:

Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 38



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)
pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

31 / 38



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pcpc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)(alias of pc-i440fx-3.0)
pc-i440fx-3.0pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)(default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

31 / 38

Traditional



x86: QEMU’s “machine types” – versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-3.0)
pc-i440fx-3.0 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-2.9 Standard PC (i440FX + PIIX, 1996)
...
q35q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-3.0)(alias of pc-q35-3.0)
pc-q35-3.0 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.9 Standard PC (Q35 + ICH9, 2009)
pc-q35-2.8 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI
31 / 38

Recommended



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need an explicit request to upgrade machine type

The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 38



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need an explicit request to upgrade machine type

The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 38



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need an explicit request to upgrade machine type
The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 38



Machine types and CPU features

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need an explicit request to upgrade machine type
The guest needs a ‘cold-reboot’ (i.e. an explicit stop +
start)—only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 38



Procedure to patch guest CPU models

First, update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU
Then tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Related guidance: qemu/docs/qemu-cpu-models.texi

33 / 38

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


Procedure to patch guest CPU models

First, update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU

Then tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Related guidance: qemu/docs/qemu-cpu-models.texi

33 / 38

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


Procedure to patch guest CPU models

First, update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

Next, update libvirt & QEMU
Then tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models
Cold-reboot the guests—to pick up new CPUID bits

 Related guidance: qemu/docs/qemu-cpu-models.texi

33 / 38

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


x86: Important CPU flags

To mitigate guests from multiple Spectre & Meltdown variants:

Intel : ssbd, pcid, spec-ctrl, md-clear
AMD: virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

Some are built into QEMU’s *-IBRS & *-IBPB CPU models

 Details:
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update
& qemu/docs/qemu-cpu-models.texi

34 / 38

https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update/
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


x86: Important CPU flags

To mitigate guests from multiple Spectre & Meltdown variants:

Intel : ssbd, pcid, spec-ctrl, md-clear
AMD: virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

Some are built into QEMU’s *-IBRS & *-IBPB CPU models

 Details:
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update
& qemu/docs/qemu-cpu-models.texi

34 / 38

https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update/
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi


‘Expectations’ from clients of QEMU & libvirt?

“QEMU and libvirt took the joint decision to
stop adding new named CPU models when CPU
vulnerabilities are discovered from this point forwards.
Applications / users would be expected to turn on
CPU features explicitly as needed and are considered
broken if they don’t provide this functionality.”

— “CPU model versioning separate from machine type versioning”
(A thread on ‘qemu-devel’ mailing list)

35 / 38



Summary

Identical host CPUs? Go with host-passthrough

Mixed CPUs: host-model is recommended;
otherwise, work out a ‘custom baseline’ CPU
Evaluate workloads before changing machine types
Take advantage of live migration to minimize guest
downtime

36 / 38



References

CPU model configuration for QEMU/KVM x86 hosts
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi

Mitigating Spectre and Meltdown (and L1TF), by David Woodhouse
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/

Exploiting modern microarchitectures—Meltdown, Spectre, and other
hardware attacks, by Jon Masters
https://archive.fosdem.org/2018/schedule/event/closing_keynote

KVM and CPU feature enablement, by Eduardo Habkost
https://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf

37 / 38

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/
https://archive.fosdem.org/2018/schedule/event/closing_keynote
https://wiki.qemu.org/images/c/c8/Cpu-models-and-libvirt-devconf-2014.pdf


Questions?
E-mail: kchamart@redhat.com
IRC: kashyap – Freenode & OFTC

38 / 38


	Interfaces to configure vCPUs
	CPU modes, models and flags
	Choosing CPU models & features

